3x^2+38x+50=0

Simple and best practice solution for 3x^2+38x+50=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+38x+50=0 equation:


Simplifying
3x2 + 38x + 50 = 0

Reorder the terms:
50 + 38x + 3x2 = 0

Solving
50 + 38x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
16.66666667 + 12.66666667x + x2 = 0

Move the constant term to the right:

Add '-16.66666667' to each side of the equation.
16.66666667 + 12.66666667x + -16.66666667 + x2 = 0 + -16.66666667

Reorder the terms:
16.66666667 + -16.66666667 + 12.66666667x + x2 = 0 + -16.66666667

Combine like terms: 16.66666667 + -16.66666667 = 0.00000000
0.00000000 + 12.66666667x + x2 = 0 + -16.66666667
12.66666667x + x2 = 0 + -16.66666667

Combine like terms: 0 + -16.66666667 = -16.66666667
12.66666667x + x2 = -16.66666667

The x term is 12.66666667x.  Take half its coefficient (6.333333335).
Square it (40.11111113) and add it to both sides.

Add '40.11111113' to each side of the equation.
12.66666667x + 40.11111113 + x2 = -16.66666667 + 40.11111113

Reorder the terms:
40.11111113 + 12.66666667x + x2 = -16.66666667 + 40.11111113

Combine like terms: -16.66666667 + 40.11111113 = 23.44444446
40.11111113 + 12.66666667x + x2 = 23.44444446

Factor a perfect square on the left side:
(x + 6.333333335)(x + 6.333333335) = 23.44444446

Calculate the square root of the right side: 4.84194635

Break this problem into two subproblems by setting 
(x + 6.333333335) equal to 4.84194635 and -4.84194635.

Subproblem 1

x + 6.333333335 = 4.84194635 Simplifying x + 6.333333335 = 4.84194635 Reorder the terms: 6.333333335 + x = 4.84194635 Solving 6.333333335 + x = 4.84194635 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-6.333333335' to each side of the equation. 6.333333335 + -6.333333335 + x = 4.84194635 + -6.333333335 Combine like terms: 6.333333335 + -6.333333335 = 0.000000000 0.000000000 + x = 4.84194635 + -6.333333335 x = 4.84194635 + -6.333333335 Combine like terms: 4.84194635 + -6.333333335 = -1.491386985 x = -1.491386985 Simplifying x = -1.491386985

Subproblem 2

x + 6.333333335 = -4.84194635 Simplifying x + 6.333333335 = -4.84194635 Reorder the terms: 6.333333335 + x = -4.84194635 Solving 6.333333335 + x = -4.84194635 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-6.333333335' to each side of the equation. 6.333333335 + -6.333333335 + x = -4.84194635 + -6.333333335 Combine like terms: 6.333333335 + -6.333333335 = 0.000000000 0.000000000 + x = -4.84194635 + -6.333333335 x = -4.84194635 + -6.333333335 Combine like terms: -4.84194635 + -6.333333335 = -11.175279685 x = -11.175279685 Simplifying x = -11.175279685

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-1.491386985, -11.175279685}

See similar equations:

| 60+4x+x^2=0 | | =-2-x | | G+(-7)=5 | | n+2n+3n+4n=2+3+4+5+6 | | -7(k+9)=9(k-5) | | 72=12x-0 | | -10-x=36 | | 4X+1=6X-5 | | 6x^2+6x+3=0 | | 7.6x=30.4 | | -2(4b+2)+(9b-3)=0 | | -6x+21=12x-15 | | 2x/6+x+2=21 | | 4n-8=n+1 | | (4x-3)/5-(4x)/3=(2(x-13))/15 | | -n-3n=20 | | -2x^3(x+1)=0 | | 0=-4.9t^2+14.7t+12 | | 2(x-6)+7(x-3)= | | (6x-3)-(2x)=0 | | -2x^3(x+1)= | | 2.1q-5.2-3.3q=-2.2q-2.9 | | y=-4.9t^2+14.7t+12 | | 3(x+2)=x+x+x+3+3 | | -(-2x)=(-30) | | 18x^3+9x^2+4x+5=0 | | 2y^2-12y+16=0 | | 5/6x-1/5x+14=7/10x | | 12-(-19)+(-6)= | | 5x-5(x-5)= | | 4x^4-6x^3+2x^2+3x=0 | | V^2+v-56=0 |

Equations solver categories